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Context and issues - Coupling of acoustic and elastic wave equations

lGoals

■ Accurate simulation of seismo-acoustic waves through
l heterogeneous domains with complex geometries

■ Treatment of realistic cases of interest
a ▶ High computational costs

lIssues

■ High-order precision needed to accurately capture waves
a ▶ Hybrid discontinuous methods (HDG/HHO)[1] [2]
[3]

■ Acoustic wave equations:

 ρF∂tv
F(t) +∇p(t) = 0

1

κ
∂tp(t) +∇ · vF(t) = g(t)

■ Elastic wave equations:

{
∂tε(t)−∇svS(t) = 0

ρS∂tv
S(t)−∇ · (C : ε(t)) = f (t)

■ Coupling conditions:

{
Jv(t) · nΓKΓ = 0

(C : ε(t)) · nΓ = p(t)nΓ

Application of HHO method to seismo-acoustic coupling

■ Approximation spaces:

a ▶ Acoustic domain: vF −→ dG(k), p −→ HHO(k′, k)

a ▶ Elastic domain: ε −→ dG(k), vS −→ HHO(k′, k)
vF

vT εT
pF

pT vT

Elastic unknowns

Elasto-acoustic interface Γ

Acoustic unknowns

Fig. 1: Elasto-acoustic unknowns with a mixed-order
discretization (k′ = k + 1 = 2)■ Algebraic realization:
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■ Mechanical energy of the scheme: Eh(t) := ESh(t) + EFh (t) with

EFh (t) :=
1

2
||vFT (t)||

2
L2(ρF;ΩF)

+
1

2
||pT (t)||2L2(1κ;ΩF)

, ESh (t) :=
1

2
||vST (t)||

2
L2(ρS;ΩS)

+
1

2
||εT (t)||2L2(C;ΩS)

■ Semi-discrete energy conservation of the scheme:

Eh(t) = Eh(0) +
∫ t

0

[
(f (α),vST (α))L2(ΩS)

+ (g(α), pT (α))L2(ΩF) − sSh(v̂
S
h(α), v̂

S
h(α))− sFh(p̂h(α), p̂h(α))

]
dα

General principles of HHO method

■ HHO is a finite element method similar to the Hybrid Discontinuous Galerkin method (HDG) [1] [2] [3]

lDesign of HHO method

■ Degrees of freedom: a ▶ Polynomial unknowns located in the cells (degree k′)
and on the faces (degree k): ûh := (uT , uF)

a ▶ Equal-order discretization: k′ = k
a ▶ Mixed-order discretization: k′ = k + 1

■ Operators: a ▶ Gradient reconstruction operator: ∇u → G(ûh),
a ▶ Stabilization operator: s(ûh, ŵh)

a • Penalty at element level to enforce weakly the matching of the
trace of the cell unknown with the local face unknowns

lAdvantages over classical finite element methods

■ Mesh flexibility: a ▶ Complex geometries
a ▶ Unstructured and polyhedral meshes
a ▶ Local mesh refinement

■ Local conservativity

■ Optimal error estimates (for smooth solutions)

■ Attractive computational costs: a ▶ Global problem couples only face dofs
a ▶ Cell dofs recovered by local post-processing
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Fig. 2: Static condensation procedure

Verification on academic test cases

■ Convergence rates on sinusöıdal solutions:

a ▶ O(hk+1) in H1-norm [1] [2] [3]

a ▶ O(hk+2) in L2-norm (superconvergence)

■ Energy conservation:

a ▶ ρS = ρF = 1, cPS = cPF =
√
3, cSS = 1

a ▶ IC: velocity Ricker wave in acoustic medium:

vF0 (x, y) := θ exp
(
−π2 r

2

λ2

)
(x− xc, y − yc)

T

Fig. 3: Errors as a function of the mesh size
with ∆t = 0.1 × 2−5 Fig. 4: Repartition of elastic and acoustic energy

Propagation of an acoustic (water) pulse into an elastic medium (granite)

■ Computational parameters:
a ▶ Computational domain:
a • Water on the upper side
a • Granite on the lower side

▶ Mixed-order discretization:

k′ = k + 1 = 3

a ▶ Time integration scheme: SDIRK(3,4)

a ▶ Time step: dt = 0, 1× 2−9

a ▶ Homogeneous Dirichlet conditions

a ▶ IC: velocity Ricker wave in the acoustic medium:

vF
0 (x, y) := θ exp

(
−π2 r

2

λ2

)
(x− xc, y − yc)

T

Fig. 5: Left panel: Distribution of acoustic pressure and elastic velocity norm, at t = 0, 4375 s.
Right panel: Pressure as a function of time at a sensor in the water (coarse mesh)

Propagation of an elastic pulse in a sedimentary basin and atmosphere

a ▶ Acoustic region: ρ = 1, 292 kg.m3, cP = 340 m.s−1 a ▶ Sedimentary region: ρ = 1200 kg.m3, cP = 3400 m.s−1, cS = 1400 m.s−1

a ▶ Bedrock region: ρ = 5350 kg.m3, cP = 3090 m.s−1, cS = 2570 m.s−1

Fig. 6: Mesh of sedimentary basin and
location of initial pulse

Fig. 7: Propagation through the sedimentary basin Fig. 8: Repartition of elastic and acoustic energy

■ Energy transfer enhancement above the sedimentary basin
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