Hybrid high-order methods
for the numerical simulation of elasto-acoustic wave propagation

École des Ponts
ParisTech

```
                \S†\ddagger
Romain Mottier
Thesis under the supervision of Alexandre Ern }\mp@subsup{}{}{\dagger\ddagger}\mathrm{ and Laurent Guillot }\mp@subsup{}{}{\S
```

§ CEA, DAM, DIF, F-91297 Arpajon, France
\ddagger CERMICS, Ecole des Ponts, F-77455 Marne la Vallée cedex 2
\dagger SERENA Project-Team, INRIA Paris, F-75589 Paris France

Table of Contents

(1) Motivation

- Context and issues
- Introduction to dG and HDG/HHO methods
(2) Model problem
(3) RK-HHO discretization
- HHO space semi-discretization
- Singly diagonally implicit schemes
- Explicit schemes

4. Numerical results

- Convergence rates
- Ricker wavelet
- Sedimentary basin
(5) To go further: Unfitted HHO method

Table of Contents

(1) Motivation

- Context and issues
- Introduction to dG and HDG/HHO methods
(2) Model problem
(3) RK-HHO discretization
- HHO space semi-discretization
- Singly diagonally implicit schemes
- Explicit schemes
(4) Numerical results
- Convergence rates
- Ricker wavelet
- Sedimentary basin
(5) To go further: Unfitted HHO method

Goal

Accurate modeling and simulation of seismo-acoustic waves through heterogeneous domains with complex geometries

Fig. 1: Global seismic wave propagation

Fig. 2: Lateral heterogeneities of the earth

Goal

Accurate modeling and simulation of seismo-acoustic waves through heterogeneous domains with complex geometries

Fig. 1: Global seismic wave propagation
Fig. 2: Lateral heterogeneities of the earth

Issues and improvments brought by HDG/HHO methods

- Commonly used numerical tools: Spectral Elements Method (e.g. SEM3D software)
- Hexahedral/quadrangular meshes which allow the use of tensorized polynomial basis
- Main issue: Complex mesh generation for classical geological structures.
- Improvments of hybrid discontinuous methods (HDG/HHO):
- High-order of convergence
- Better handling of strong property contrasts
- Greater flexibility for time integrators

Comparison between DG and classical CG methods

Advantages of DG methods:

- Mesh flexibility:
- Complex geometries
- Unstructured and polyhedral meshes
- Local mesh refinement
- Natural handling of discontinuities
- Broken polynomial basis:
- Local conservativity
- Same order of convergence as CG
- H^{1}-error estimate: $\mathcal{O}\left(h^{k}\right)$
- L^{2}-error estimate: $\mathcal{O}\left(h^{k+1}\right)$

Drawbacks of DG methods: Higher computational cost and memory requirement

continuousGalerkin(CG)

DiscontinuousGalerkin(DG)

Fig. 3: Distribution of discrete unknowns for CG and DG

Introduction of HDG/HHO methods

- Seminal papers:
- HDG [Cockburn, Gopalakrishnan, Lazarovby, 2009]
- HHO [Di Pietro, Ern, Lemaire, 2014], [Di Pietro, Ern, 2015]

Introduction of HDG/HHO methods

- Seminal papers:
- HDG [Cockburn, Gopalakrishnan, Lazarovby, 2009]
- HHO [Di Pietro, Ern, Lemaire, 2014], [Di Pietro, Ern, 2015]

Degrees of freedom

- Polynomial unknowns located in the cells and on the faces

Cell unknowns of degree \boldsymbol{k}^{\prime}

HHO unknowns:

$$
\hat{\boldsymbol{u}}_{\boldsymbol{h}}:=\left(\boldsymbol{u}_{\mathcal{T}}, \boldsymbol{u}_{\mathcal{F}}\right) \in \hat{\mathcal{U}}_{\boldsymbol{h}}
$$

Face unknowns of degree k

Fig. 4: Local representation of HHO unknowns. Left panel: Equal-order discretization with $k^{\prime}=k=0$. Right panel: Mixed-order discretization with $k^{\prime}=k+1=1$.

Introduction of HDG/HHO methods

- Seminal papers:
- HDG [Cockburn, Gopalakrishnan, Lazarovby, 2009]
- HHO [Di Pietro, Ern, Lemaire, 2014], [Di Pietro, Ern, 2015]

Degrees of freedom

- Polynomial unknowns located in the cells and on the faces

Cell unknowns of degree \boldsymbol{k}^{\prime}

ННО unknowns:

$$
\hat{\boldsymbol{u}}_{\boldsymbol{h}}:=\left(\boldsymbol{u}_{\mathcal{T}}, \boldsymbol{u}_{\mathcal{F}}\right) \in \hat{\mathcal{U}}_{\boldsymbol{h}}
$$

Face unknowns of degree k

Fig. 4: Local representation of HHO unknowns. Left panel: Equal-order discretization with $k^{\prime}=k=0$. Right panel: Mixed-order discretization with $k^{\prime}=k+1=1$.

Design

- Gradient reconstruction operator: $(\boldsymbol{\nabla} \boldsymbol{u})_{\mid T} \rightarrow \mathbf{G}_{\boldsymbol{T}}\left(\hat{\boldsymbol{u}}_{T}\right)$
- Stabilization operator: $\boldsymbol{S}_{\partial T}\left(\boldsymbol{\delta}\left(\hat{\boldsymbol{u}}_{T}\right)\right)$ with $\boldsymbol{\delta}_{\partial T}\left(\hat{\boldsymbol{u}}_{T}\right):=\boldsymbol{u}_{T \mid \partial T}-\boldsymbol{u}_{\partial T}$ Penalize in a least square sens

Advantages of HDG / HHO over DG methods

- Improved error estimates for smooth solutions:
- H^{1}-error estimate: $\mathcal{O}\left(h^{k+1}\right)$
- L^{2}-error estimate: $\mathcal{O}\left(h^{k+2}\right)$ (superconvergence)
- Attractive computational costs: Elimination of cell unknowns by Schur complement (static condensation) :
- Global problem couples only face dofs
- Cell dofs recovered by local post-processing

Fig. 5: Assembly and Schur complement procedure in the framework of HDG/HHO schemes

Table of Contents

(1) Motivation

- Context and issues
- Introduction to dG and HDG/HHO methods
(2) Model problem
(3) RK-HHO discretization
- HHO space semi-discretization
- Singly diagonally implicit schemes
- Explicit schemes
(4) Numerical results
- Convergence rates
- Ricker wavelet
- Sedimentary basin
(5) To go further: Unfitted HHO method
- Domain decomposition: $\quad \Gamma$

$\Omega:=\Omega^{\mathrm{S}} \cup \Omega^{\mathrm{F}}$

Fig. 6: Setting for elasto-acoustic coupling

- Domain decomposition: $\quad \Gamma$

$\Omega:=\Omega^{\mathrm{S}} \cup \Omega^{\mathrm{F}}$

Fig. 6: Setting for elasto-acoustic coupling

Strong form of acoustic and elastic wave equation in $1^{\text {st }}$ order formulation

$$
\left\{\begin{aligned}
\partial_{t} \boldsymbol{\varepsilon}-\nabla_{s} \boldsymbol{v}^{\mathrm{s}} & =\mathbf{0} \\
\rho^{\mathrm{s}} \partial_{t} \boldsymbol{v}^{\mathrm{s}}-\nabla \cdot(\boldsymbol{C}: \varepsilon) & =\boldsymbol{f}
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
\rho^{\mathrm{F}} \partial_{t} \boldsymbol{v}^{\mathrm{F}}-\nabla p & =\mathbf{0} \\
\frac{1}{\kappa} \partial_{t} p-\nabla \cdot \boldsymbol{v}^{\mathrm{F}} & =g
\end{aligned}\right.
$$

- $\boldsymbol{v}^{\mathrm{s}}\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$ elastic velocity field
$-\varepsilon:=\nabla_{s} u$ linearized strain tensor
- $\rho^{\mathrm{s}}\left[\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right]$ solid density
- $\mathcal{C}[\mathrm{Pa}] 4^{\text {th }}$-order Hooke tensor
$-f\left[\frac{\mathrm{~kg}}{\mathrm{~m}^{2} \mathrm{~s}^{2}}\right]$ source term
- $p[\mathrm{~Pa}]$ scalar pressure field
- $\boldsymbol{v}^{\mathrm{F}}\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$ acoustic velocity field
$-\rho^{\mathrm{F}}\left[\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right]$ fluid density
$-\kappa[\mathrm{Pa}]$ fluid bulk modulus
- $g\left[\frac{1}{\mathrm{~s}}\right]$ source term
- Domain decomposition: $\quad \Gamma$

$\Omega:=\Omega^{\mathrm{S}} \cup \Omega^{\mathrm{F}}$

Fig. 6: Setting for elasto-acoustic coupling

Strong form of acoustic and elastic wave equation in $1^{\text {st }}$ order formulation

$$
\left\{\begin{aligned}
\partial_{t} \boldsymbol{\varepsilon}-\nabla_{s} \boldsymbol{v}^{\mathrm{s}} & =\mathbf{0} \\
\rho^{\mathrm{s}} \partial_{t} \boldsymbol{v}^{\mathrm{s}}-\nabla \cdot(\boldsymbol{\mathcal { C }}: \varepsilon) & =\boldsymbol{f}
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
\rho^{\mathrm{F}} \partial_{t} \boldsymbol{v}^{\mathrm{F}}-\nabla p & =\mathbf{0} \\
\frac{1}{\kappa} \partial_{t} p-\nabla \cdot \boldsymbol{v}^{\mathrm{F}} & =g
\end{aligned}\right.
$$

- $\boldsymbol{v}^{\mathrm{s}}\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$ elastic velocity field
$-\varepsilon:=\nabla_{s} u$ linearized strain tensor
- $\rho^{\mathrm{s}}\left[\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right]$ solid density
- $\mathcal{C}[\mathrm{Pa}] 4^{\text {th }}$-order Hooke tensor
- $\boldsymbol{f}\left[\frac{\mathrm{kg}}{\mathrm{m}^{2} \mathrm{~s}^{2}}\right]$ source term
- $p[\mathrm{~Pa}]$ scalar pressure field
- $\boldsymbol{v}^{\mathrm{F}}\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$ acoustic velocity field
$-\rho^{\mathrm{F}}\left[\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right]$ fluid density
$-\kappa[\mathrm{Pa}]$ fluid bulk modulus
- $g\left[\frac{1}{\mathrm{~s}}\right]$ source term

Coupling conditions

$$
\left\{\begin{aligned}
\boldsymbol{v}^{\mathrm{S}} \cdot \boldsymbol{n}_{\Gamma} & =\boldsymbol{v}^{\mathrm{F}} \cdot \boldsymbol{n}_{\Gamma} \\
(\boldsymbol{C}: \boldsymbol{\varepsilon}) \cdot \boldsymbol{n}_{\Gamma} & =p \boldsymbol{n}_{\Gamma}
\end{aligned}\right.
$$

Continuity of the velocity's normal component

- Balance of forces

Initial and boundary conditions

- Acoustic domain:

$$
\left.\begin{array}{rlr}
\left.p\right|_{t=0} & =p_{0} \\
\left.\boldsymbol{v}^{\mathrm{F}}\right|_{t=0} & =\boldsymbol{v}_{0}^{\mathrm{F}} & \text { in } \Omega^{\mathrm{F}},
\end{array} \quad p\right|_{\partial \Omega^{\mathrm{F}} \backslash \Gamma}=0 \quad \text { on } J \times\left(\partial \Omega^{\mathrm{F}} \backslash \Gamma\right)
$$

- Elastic domain:

$$
\left.\boldsymbol{v}^{\mathrm{s}}\right|_{t=0}=\boldsymbol{v}_{0}^{\mathrm{s}} \quad \text { in } \Omega^{\mathrm{s}},\left.\quad \quad \boldsymbol{v}^{\mathrm{s}}\right|_{\partial \Omega^{\mathrm{s}} \backslash \Gamma}=\mathbf{0} \quad \text { on } J \times\left(\partial \Omega^{\mathrm{s}} \backslash \Gamma\right)
$$

- Homogeneous Dirichlet boundary conditions on $\partial \Omega$ for simplicity

Initial and boundary conditions

- Acoustic domain:

$$
\begin{aligned}
&\left.p\right|_{t=0}=p_{0} \\
&\left.\boldsymbol{v}^{\mathrm{F}}\right|_{t=0}=\boldsymbol{v}_{0}^{\mathrm{F}} \text { in } \Omega^{\mathrm{F}},\left.\quad \quad p\right|_{\partial \Omega^{\mathrm{F}} \backslash \Gamma}=0 \quad \text { on } J \times\left(\partial \Omega^{\mathrm{F}} \backslash \Gamma\right) .
\end{aligned}
$$

- Elastic domain:

$$
\begin{aligned}
\left.\boldsymbol{v}^{\mathrm{s}}\right|_{t=0} & =\boldsymbol{v}_{0}^{\mathrm{s}} \\
\left.\boldsymbol{\varepsilon}\right|_{t=0} & =\boldsymbol{\varepsilon}_{0}
\end{aligned} \quad \text { in } \Omega^{\mathrm{s}},\left.\quad \quad \boldsymbol{v}^{\mathrm{s}}\right|_{\partial \Omega^{\mathrm{s}} \backslash \Gamma}=\mathbf{0} \quad \text { on } J \times\left(\partial \Omega^{\mathrm{s}} \backslash \Gamma\right)
$$

- Homogeneous Dirichlet boundary conditions on $\partial \Omega$ for simplicity

Weak form of the acoustic and elastic wave equations in $1^{\text {st }}$ order formulation

- Let $J:=\left(0, T_{\mathrm{f}}\right)$ with $T_{\mathrm{f}}>0$
- Acoustic: Find $\left(p, \boldsymbol{v}^{\mathrm{F}}\right): J \times \Omega^{\mathrm{F}} \longrightarrow \mathbb{R} \times \mathbb{R}^{d}$ such that, for all $t \in J$,

$$
\left\{\begin{array}{l}
\rho^{\mathrm{F}}\left(\partial_{t} \boldsymbol{v}^{\mathrm{F}}(t), \boldsymbol{q}\right)_{\Omega^{\mathrm{F}}}-(\nabla p(t), \boldsymbol{q})_{\Omega^{\mathrm{F}}}=0 \\
\frac{1}{\kappa}\left(\partial_{t} p(t), r\right)_{\Omega^{\mathrm{F}}}+\left(\boldsymbol{v}^{\mathrm{F}}(t), \nabla r\right)_{\Omega^{\mathrm{F}}}+\left(\boldsymbol{v}^{\mathrm{S}}(t) \cdot \boldsymbol{n}_{\Gamma}, r\right)_{\Gamma}=(g(t), r)_{\Omega^{\mathrm{F}}}
\end{array}\right.
$$

$\forall(r, \boldsymbol{q}) \in H_{0 \mathrm{~F}}^{1}\left(\Omega^{\mathrm{F}}\right) \times \boldsymbol{L}^{2}\left(\Omega^{\mathrm{F}}\right)$.

- Elastic: Find $\left(\boldsymbol{v}^{\mathrm{s}}, \boldsymbol{\varepsilon}\right): J \times \Omega^{\mathrm{s}} \longrightarrow \mathbb{R}^{d} \times \mathbb{R}_{\mathrm{sym}}^{d \times d}$ such that, for all $t \in J$,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left(\partial_{t} \boldsymbol{\varepsilon}(t), \boldsymbol{z}\right)_{\Omega^{\mathrm{s}}}-\left(\nabla_{s} \boldsymbol{v}^{\mathrm{s}}(t), \boldsymbol{z}\right)_{\Omega^{\mathrm{s}}}=0, \\
\rho^{\mathrm{s}}\left(\partial_{t} \boldsymbol{v}^{\mathrm{s}}(t), \boldsymbol{w}\right)_{\Omega^{\mathrm{s}}}+\left(\mathcal{C}: \boldsymbol{\varepsilon}(t), \nabla_{s} \boldsymbol{w}\right)_{\Omega^{\mathrm{s}}}-\left(p(t) \boldsymbol{n}_{\Gamma}, \boldsymbol{w}\right)_{\Gamma}=(\boldsymbol{f}(t), \boldsymbol{w})_{\Omega^{\mathrm{s}}},
\end{array}\right. \\
& \forall(\boldsymbol{w}, \boldsymbol{z}) \in \boldsymbol{H}_{0 \mathrm{~s}}^{1}\left(\Omega^{\mathrm{s}}\right) \times \boldsymbol{L}^{2}\left(\Omega^{\mathrm{s}} ; \mathbb{R}_{\mathrm{sym}}^{d \times d}\right) .
\end{aligned}
$$

Table of Contents

(1) Motivation

- Context and issues
- Introduction to dG and HDG/HHO methods
(2) Model problem
(3) RK-HHO discretization
- HHO space semi-discretization
- Singly diagonally implicit schemes
- Explicit schemes
(4) Numerical results
- Convergence rates
- Ricker wavelet
- Sedimentary basin
(5) To go further: Unfitted HHO method

Approximation spaces and HHO space semi-discretization

- Elastic domain:

$$
\mathcal{Z}_{\mathcal{T}^{\mathrm{S}}}^{k}:=\underbrace{\varliminf_{T \in \mathcal{T}_{h}^{\mathrm{S}}} \mathbb{P}^{k}\left(T ; \mathbb{R}_{\mathrm{sym}}^{d \times d}\right)}_{\text {space for } \varepsilon}
$$

space for $\boldsymbol{v}^{\mathrm{S}}$

○ HHO elastic unknowns - Elasto-acoustic interface Γ - HHO acoustic unknowns

Fig. 7: Elasto-acoustic HHO unknowns with $k^{\prime}=1, k=0$.

DG elastic unknowns
Elasto-acoustic interface Γ
DG acoustic unknowns

Fig. 8: Elasto-acoustic DG unknowns with $k=0$.

Local reconstruction operators

- Acoustic domain: Gradient reconstruction:
$\boldsymbol{G}_{T}: \widehat{\mathcal{U}}_{T}^{\mathrm{F}} \rightarrow \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)$ is s.t. for all $\hat{p}_{T} \in \widehat{\mathcal{U}}_{T}^{\mathrm{F}}$,

$$
\left(\boldsymbol{G}_{T}\left(\hat{p}_{T}\right), \boldsymbol{q}\right)_{T}=\left(\nabla p_{T}, \boldsymbol{q}\right)_{T}-\left(p_{T}-p_{\partial T}, \boldsymbol{q} \cdot \boldsymbol{n}_{T}\right)_{\partial T}, \quad \forall \boldsymbol{q} \in \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)
$$

- Elastic domain: Strain reconstruction

$$
\boldsymbol{E}_{T}: \widehat{\mathcal{U}}_{T}^{\mathrm{s}} \rightarrow \mathbb{P}^{k}\left(T ; \mathbb{R}_{\mathrm{sym}}^{d \times d}\right) \text { s.t. for all } \hat{\boldsymbol{v}}_{T}^{\mathrm{s}} \in \widehat{\boldsymbol{\mathcal { U }}}_{T}^{\mathrm{s}} \text { and all } \boldsymbol{\zeta} \in \mathbb{P}^{k}\left(T ; \mathbb{R}_{\mathrm{sym}}^{d \times d}\right)
$$

$$
\left(\boldsymbol{E}_{T}\left(\hat{\boldsymbol{v}}_{T}^{\mathrm{s}}\right), \boldsymbol{\zeta}\right)_{T}=\left(\nabla_{s} \boldsymbol{v}_{T}^{\mathrm{S}}, \boldsymbol{\zeta}\right)_{T}-\left(\boldsymbol{v}_{T}^{\mathrm{S}}-\boldsymbol{v}_{\partial T}^{\mathrm{S}}, \boldsymbol{\zeta} \cdot \boldsymbol{n}_{T}\right)_{\partial T}
$$

Local reconstruction operators

- Acoustic domain: Gradient reconstruction:
$\boldsymbol{G}_{T}: \widehat{\mathcal{U}}_{T}^{\mathrm{F}} \rightarrow \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)$ is s.t. for all $\hat{p}_{T} \in \widehat{\mathcal{U}}_{T}^{\mathrm{F}}$,

$$
\left(\boldsymbol{G}_{T}\left(\hat{p}_{T}\right), \boldsymbol{q}\right)_{T}=\left(\nabla p_{T}, \boldsymbol{q}\right)_{T}-\left(p_{T}-p_{\partial T}, \boldsymbol{q} \cdot \boldsymbol{n}_{T}\right)_{\partial T}, \quad \forall \boldsymbol{q} \in \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)
$$

- Elastic domain: Strain reconstruction
$\boldsymbol{E}_{T}: \widehat{\mathcal{U}}_{T}^{\mathrm{s}} \rightarrow \mathbb{P}^{k}\left(T ; \mathbb{R}_{\mathrm{sym}}^{d \times d}\right)$ s.t. for all $\hat{\boldsymbol{v}}_{T}^{\mathrm{s}} \in \widehat{\boldsymbol{U}}_{T}^{\mathrm{s}}$ and all $\boldsymbol{\zeta} \in \mathbb{P}^{k}\left(T ; \mathbb{R}_{\mathrm{sym}}^{d \times d}\right)$,

$$
\left(\boldsymbol{E}_{T}\left(\hat{\boldsymbol{v}}_{T}^{\mathrm{s}}\right), \boldsymbol{\zeta}\right)_{T}=\left(\nabla_{s} \boldsymbol{v}_{T}^{\mathrm{S}}, \boldsymbol{\zeta}\right)_{T}-\left(\boldsymbol{v}_{T}^{\mathrm{S}}-\boldsymbol{v}_{\partial T}^{\mathrm{S}}, \boldsymbol{\zeta} \cdot \boldsymbol{n}_{T}\right)_{\partial T}
$$

Local stabilization operators

- Mixed-order discretization: Same stabilization as HDG (Lehrenfeld-Schöberl)

$$
S_{\partial T}\left(\delta\left(\hat{p}_{h}\right)\right):=\Pi_{\partial T}^{k}\left(\delta\left(\hat{p}_{h}\right)\right) \quad \boldsymbol{S}_{\partial T}\left(\boldsymbol{\delta}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}\right)\right):=\boldsymbol{\Pi}_{\partial T}^{k}\left(\boldsymbol{\delta}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}\right)\right)
$$

- Equal-order discretization: Specific stabilization to HHO

$$
\begin{aligned}
S_{\partial T}\left(\delta\left(\hat{p}_{h}\right)\right) & :=\Pi_{\partial T}^{k}\left(\delta\left(\hat{p}_{h}\right)+\left(\left(I-\Pi_{T}^{k}\right) R_{T}\left(0, \delta\left(\hat{p}_{h}\right)\right)\right)_{\mid \partial T}\right) \\
\boldsymbol{S}_{\partial T}\left(\delta\left(\hat{\boldsymbol{v}}_{T}^{\mathrm{s}}\right)\right) & :=\boldsymbol{\Pi}_{\partial T}^{k}\left(\boldsymbol{\delta}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}\right)+\left(\left(\boldsymbol{I}-\boldsymbol{\Pi}_{T}^{k}\right) \boldsymbol{R}_{T}\left(0, \boldsymbol{\delta}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}\right)\right)\right)_{\mid \partial T}\right)
\end{aligned}
$$

- More costly than the mixed-order case
- Need additional velocity and pressure reconstructions (R_{T} and \boldsymbol{R}_{T})

Global operators

- Global gradient reconstructions:

$$
\begin{aligned}
& \boldsymbol{G}_{\mathcal{T}}: \widehat{\mathcal{U}}_{h}^{\mathrm{F}} \rightarrow \chi_{T \in \mathcal{T}_{h}} \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right) \text { s.t. }\left(\boldsymbol{G} \mathcal{T}\left(\hat{p}_{h}\right)\right)_{\mid T}:=\boldsymbol{G}_{T}\left(\hat{p}_{T}\right) \text { for all } T \in \mathcal{T}_{h} \text { and all } \hat{p}_{h} \in \widehat{\mathcal{U}}_{h}^{\mathrm{F}} \\
& \boldsymbol{E}_{\mathcal{T}}: \widehat{\mathcal{U}}_{h}^{\mathrm{s}} \rightarrow \chi_{T \in \mathcal{T}_{h}} \mathbb{P}^{k}\left(T ; \mathbb{R}_{\mathrm{sym}}^{d \times d}\right) \text { s.t. }\left(\boldsymbol{E}_{\mathcal{T}}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}\right)\right)_{\mid T}:=\boldsymbol{E}_{T}\left(\hat{\boldsymbol{v}}_{T}^{\mathrm{S}}\right) \text { for all } T \in \mathcal{T}_{h} \text { and all } \hat{\boldsymbol{v}}_{h}^{\mathrm{S}} \in \widehat{\boldsymbol{U}}_{h}^{\mathrm{s}}
\end{aligned}
$$

- Global stabilization forms: For all $T \in \mathcal{T}_{h}$,

$$
\begin{aligned}
& s_{h}^{\mathrm{F}}\left(\hat{p}_{h}, \hat{q}_{h}\right)=\sum_{T \in \mathcal{T}_{h}} \tau_{T}^{\mathrm{F}}\left(\boldsymbol{S}_{\partial T}\left(\hat{p}_{h}\right), \boldsymbol{S}_{\partial T}\left(\hat{\boldsymbol{q}}_{h}\right)\right)_{\partial T} \\
& s_{h}^{\mathrm{s}}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}, \hat{\boldsymbol{\zeta}}_{h}\right)=\sum_{T \in \mathcal{T}_{h}} \tau_{T}^{\mathrm{s}}\left(\boldsymbol{S}_{\partial T}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}\right), \boldsymbol{S}_{\partial T}\left(\hat{\boldsymbol{\zeta}}_{h}\right)\right) \partial T
\end{aligned}
$$

Global operators

- Global gradient reconstructions:

$$
\begin{aligned}
& \boldsymbol{G}_{\mathcal{T}}: \widehat{\mathcal{U}}_{h}^{\mathrm{F}} \rightarrow \chi_{T \in \mathcal{T}_{h}} \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right) \text { s.t. }\left(\boldsymbol{G}_{\mathcal{T}}\left(\hat{p}_{h}\right)\right)_{\mid T}:=\boldsymbol{G}_{T}\left(\hat{p}_{T}\right) \text { for all } T \in \mathcal{T}_{h} \text { and all } \hat{p}_{h} \in \widehat{\mathcal{U}}_{h}^{\mathrm{F}} \\
& \boldsymbol{E}_{\mathcal{T}}: \widehat{\mathcal{U}}_{h}^{\mathrm{s}} \rightarrow \chi_{T \in \mathcal{T}_{h}} \mathbb{P}^{k}\left(T ; \mathbb{R}_{\mathrm{sym}}^{d \times d}\right) \text { s.t. }\left(\boldsymbol{E}_{\mathcal{T}}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}\right)\right)_{\mid T}:=\boldsymbol{E}_{T}\left(\hat{\boldsymbol{v}}_{T}^{\mathrm{s}}\right) \text { for all } T \in \mathcal{T}_{h} \text { and all } \hat{\boldsymbol{v}}_{h}^{\mathrm{s}} \in \widehat{\boldsymbol{U}}_{h}^{\mathrm{S}}
\end{aligned}
$$

- Global stabilization forms: For all $T \in \mathcal{T}_{h}$,

$$
\begin{aligned}
& s_{h}^{\mathrm{F}}\left(\hat{p}_{h}, \hat{q}_{h}\right)=\sum_{T \in \mathcal{T}_{h}} \tau_{T}^{\mathrm{F}}\left(\boldsymbol{S}_{\partial T}\left(\hat{p}_{h}\right), \boldsymbol{S}_{\partial T}\left(\hat{\boldsymbol{q}}_{h}\right)\right)_{\partial T} \\
& s_{h}^{\mathrm{S}}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{S}}, \hat{\boldsymbol{\zeta}}_{h}\right)=\sum_{T \in \mathcal{T}_{h}} \tau_{T}^{\mathrm{S}}\left(\boldsymbol{S}_{\partial T}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{S}}\right), \boldsymbol{S}_{\partial T}\left(\hat{\boldsymbol{\zeta}}_{h}\right)\right)_{\partial T}
\end{aligned}
$$

Stabilization parameter

- Acoustic stabilization parameter:
- $\tau_{T}^{\mathrm{F}}:=\frac{1}{\rho^{F} c_{\mathrm{P}}^{\mathrm{F}}}=\mathcal{O}(1)$
- $\tau_{T}^{\mathrm{F}}:=\frac{1}{\rho^{\mathrm{F}} c_{\mathrm{P}}^{\mathrm{F}}} \frac{\ell_{\Omega}}{h_{T}}=\mathcal{O}\left(h_{T}^{-1}\right)$
- Elastic stabilization parameter:
- $\tau_{T}^{\mathrm{s}}:=\rho^{\mathrm{s}} c_{\mathrm{S}}=\mathcal{O}(1)$
$>\tau_{T}^{\mathrm{s}}:=\rho^{\mathrm{s}} c_{\mathrm{S}} \frac{\ell_{\Omega}}{h_{T}}=\mathcal{O}\left(h_{T}^{-1}\right)$
- Dimensionnaly consistent parameter

HHO space semi-discretization for the elasto-acoustic coupling

- Acoustic wave equation:
$\left(\rho^{\mathrm{F}} \partial_{t} \boldsymbol{v}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}}(t), \boldsymbol{r}_{\mathcal{T}}\right)_{\Omega^{\mathrm{F}}}+\left(\boldsymbol{G}_{\mathcal{T}}\left(\hat{p}_{h}(t)\right), \boldsymbol{r}_{\mathcal{T}}\right)_{\Omega^{\mathrm{F}}}=0$
$\left(\frac{1}{\kappa} \partial_{t} p_{\mathcal{T}}(t), q_{\mathcal{T}}\right)_{\Omega^{\mathrm{F}}}-\left(\boldsymbol{v}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}}(t), \boldsymbol{G}_{\mathcal{T}}\left(\hat{q}_{h}\right)\right)_{\Omega^{\mathrm{F}}}+s_{h}^{\mathrm{F}}\left(\hat{p}_{h}(t), \hat{q}_{h}\right)-\left(\boldsymbol{v}_{\mathcal{F}^{\mathrm{S}}}^{\mathrm{S}}(t) \cdot \boldsymbol{n}_{\Gamma}, q_{\mathcal{F}}\right)_{\Gamma}=\left(g(t), q_{\mathcal{T}}\right)_{\Omega^{\mathrm{F}}}$
- Elastic wave equation:

$$
\begin{aligned}
& \left(\partial_{t} \boldsymbol{\varepsilon}_{\mathcal{T}}(t), \boldsymbol{z}_{\mathcal{T}}\right)_{\Omega^{\mathrm{s}}}-\left(\boldsymbol{E}_{\mathcal{T}}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}(t)\right), \boldsymbol{z}_{\mathcal{T}}\right)_{\Omega^{\mathrm{s}}}=0 \\
& \left(\rho^{\mathrm{s}} \partial_{t} \boldsymbol{v}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{s}}(t), \boldsymbol{w}_{\mathcal{T}}\right)_{\Omega^{\mathrm{s}}}+\left(\boldsymbol{\mathcal { C }}: \boldsymbol{\varepsilon}_{\mathcal{T}}, \boldsymbol{E}_{\mathcal{T}}\left(\hat{\boldsymbol{w}}_{h}\right)\right)_{\Omega^{\mathrm{s}}}+s_{h}^{\mathrm{s}}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{S}}, \hat{\boldsymbol{w}}_{h}\right)+\left(p_{\mathcal{F}}(t), \boldsymbol{w}_{\mathcal{F}} \cdot \boldsymbol{n}_{\Gamma}\right)_{\Gamma}=\left(\boldsymbol{f}(t), \boldsymbol{w}_{\mathcal{T}}\right)_{\Omega^{\mathrm{s}}}
\end{aligned}
$$

HHO space semi-discretization for the elasto-acoustic coupling

- Acoustic wave equation:
$\left(\rho^{\mathrm{F}} \partial_{t} \boldsymbol{v}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}}(t), \boldsymbol{r}_{\mathcal{T}}\right)_{\Omega^{\mathrm{F}}}+\left(\boldsymbol{G}_{\mathcal{T}}\left(\hat{p}_{h}(t)\right), \boldsymbol{r}_{\mathcal{T}}\right)_{\Omega^{\mathrm{F}}}=0$
$\left(\frac{1}{\kappa} \partial_{t} p_{\mathcal{T}}(t), q_{\mathcal{T}}\right)_{\Omega^{\mathrm{F}}}-\left(\boldsymbol{v}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}}(t), \boldsymbol{G}_{\mathcal{T}}\left(\hat{q}_{h}\right)\right)_{\Omega^{\mathrm{F}}}+s_{h}^{\mathrm{F}}\left(\hat{p}_{h}(t), \hat{q}_{h}\right)-\left(\boldsymbol{v}_{\mathcal{F}^{\mathrm{S}}}^{\mathrm{S}}(t) \cdot \boldsymbol{n}_{\Gamma}, q_{\mathcal{F}}\right)_{\Gamma}=\left(g(t), q_{\mathcal{T}}\right)_{\Omega^{\mathrm{F}}}$
- Elastic wave equation:
$\left(\partial_{t} \boldsymbol{\varepsilon}_{\mathcal{T}}(t), \boldsymbol{z}_{\mathcal{T}}\right)_{\Omega^{\mathrm{s}}}-\left(\boldsymbol{E}_{\mathcal{T}}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}(t)\right), \boldsymbol{z}_{\mathcal{T}}\right)_{\Omega^{\mathrm{s}}}=0$
$\left(\rho^{\mathrm{s}} \partial_{t} \boldsymbol{v}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{s}}(t), \boldsymbol{w}_{\mathcal{T}}\right)_{\Omega^{\mathrm{s}}}+\left(\boldsymbol{\mathcal { C }}: \varepsilon_{\mathcal{T}}, \boldsymbol{E}_{\mathcal{T}}\left(\hat{\boldsymbol{w}}_{h}\right)\right)_{\Omega^{\mathrm{s}}}+s_{h}^{\mathrm{s}}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{s}}, \hat{\boldsymbol{w}}_{h}\right)+\left(p_{\mathcal{F}}(t), \boldsymbol{w}_{\mathcal{F}} \cdot \boldsymbol{n}_{\Gamma}\right)_{\Gamma}=\left(\boldsymbol{f}(t), \boldsymbol{w}_{\mathcal{T}}\right)_{\Omega^{\mathrm{s}}}$

Energy balance

- Mechanical energy of the scheme: $\mathcal{E}_{h}(t):=\mathcal{E}_{h}^{\mathrm{S}}(t)+\mathcal{E}_{h}^{\mathrm{F}}(t)$ with

$$
\begin{aligned}
\mathcal{E}_{h}^{\mathrm{F}}(t) & :=\frac{1}{2}\left\|\rho^{\mathrm{F}} \boldsymbol{v}_{\mathcal{T}}^{\mathrm{F}}(t)\right\|_{\Omega^{\mathrm{F}}}^{2}+\frac{1}{2}\left\|\frac{1}{\kappa} p_{\mathcal{T}}(t)\right\|_{\Omega^{\mathrm{F}}}^{2} \\
\mathcal{E}_{h}^{\mathrm{S}}(t) & :=\frac{1}{2}\left\|\rho^{\mathrm{S}} \boldsymbol{v}_{\mathcal{T}}^{\mathrm{S}}(t)\right\|_{\Omega^{\mathrm{S}}}^{2}+\frac{1}{2}\|\mathcal{C}: \varepsilon(t)\|_{\Omega^{\mathrm{S}}}^{2}
\end{aligned}
$$

- Semi-discrete energy conservation of the scheme:

$$
\begin{aligned}
\mathcal{E}_{h}(t)+\int_{0}^{t}\left[s_{h}^{\mathrm{S}}\left(\hat{\boldsymbol{v}}_{h}^{\mathrm{S}}(\alpha), \hat{\boldsymbol{v}}_{h}^{\mathrm{S}}(\alpha)\right)+s_{h}^{\mathrm{F}}\left(\hat{p}_{h}(\alpha), \hat{p}_{h}(\alpha)\right)\right] \mathrm{d} \alpha= \\
\mathcal{E}_{h}(0)+\int_{0}^{t}\left[\left(\boldsymbol{f}(\alpha), \boldsymbol{v}_{\mathcal{T}^{\mathrm{S}}}^{\mathrm{S}}(\alpha)\right)_{\Omega^{\mathrm{S}}}+\left(g(\alpha), p_{\mathcal{T}}(\alpha)\right)_{\Omega^{\mathrm{F}}}\right] \mathrm{d} \alpha
\end{aligned}
$$

$1^{\text {st }}$ order formulation: stabilisation dissipates exact energy

Algebraic realization

- Static coupling between cell and face unknowns

$$
\left[\begin{array}{ccc:ccc}
\mathbf{M}_{\mathcal{T} \mathcal{T}}^{v^{\mathrm{F}}} & 0 & 0 & 0 & 0 & 0 \\
0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{F}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\varepsilon} & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{s}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{c}
\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}} \\
\mathrm{P}_{\mathcal{T}^{\mathrm{F}}} \\
\mathrm{P}_{\mathcal{F}^{\mathrm{F}}} \\
\hdashline \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}} \\
\mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{s}} \\
\mathrm{~V}_{\mathcal{F}^{\mathrm{s}}}^{\mathrm{s}}
\end{array}\right]+\left[\begin{array}{ccc:ccc}
0 & -\mathrm{G}_{\mathcal{T}} & -\mathrm{G}_{\mathcal{F}} & 0 & 0 & 0 \\
\mathrm{G}_{\mathcal{T}}^{\dagger} & \Sigma_{\mathcal{T} \mathcal{T}}^{\mathrm{F}} & \Sigma_{\mathcal{T} \mathcal{F}}^{\mathrm{F}} & 0 & 0 & 0 \\
\mathrm{G}_{\mathcal{F}}^{\dagger} & \Sigma_{\mathcal{F} \mathcal{T}}^{\mathrm{F}} & \Sigma_{\mathcal{F} \mathcal{F}}^{\mathrm{F}} & 0 & 0 & \mathrm{C}_{\Gamma} \\
\hdashline 0 & 0 & 0 & 0 & -\mathrm{E}_{\mathcal{T}} & -\mathrm{E}_{\mathcal{F}} \\
0 & 0 & 0 & \mathrm{E}_{\mathcal{T}}^{\dagger} & \Sigma_{\mathcal{T} \mathcal{T}}^{\mathrm{S}} & \Sigma_{\mathcal{T} \mathcal{F}^{S}}^{\mathrm{S}} \\
0 & 0 & -\mathrm{C}_{\Gamma}^{\dagger} & \mathrm{E}_{\mathcal{F}}^{\dagger} & \Sigma_{\mathcal{F} \mathcal{T}}^{\mathrm{S}} & \Sigma_{\mathcal{F} \mathcal{F}}^{\mathrm{S}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}} \\
\mathrm{P}_{\mathcal{T}^{\mathrm{F}}} \\
\mathrm{P}_{\mathcal{T}^{\mathrm{F}}} \\
\hdashline \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}} \\
\mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{s}} \\
\mathrm{~V}_{\mathcal{F}^{\mathrm{s}}}^{\mathrm{s}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{G}_{\mathcal{T}^{\mathrm{F}}} \\
0 \\
\hdashline 0 \\
\mathrm{~F}_{\mathcal{T}^{\mathrm{s}}} \\
0
\end{array}\right]
$$

Algebraic realization

- Static coupling between cell and face unknowns

$$
\left[\begin{array}{ccc:ccc}
\mathbf{M}_{\mathcal{T} \mathcal{T}}^{v^{\mathrm{F}}} & 0 & 0 & 0 & 0 & 0 \\
0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{F}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\varepsilon} & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{s}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{c}
\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}} \\
\mathrm{P}_{\mathcal{T}^{\mathrm{F}}} \\
\mathrm{P}_{\mathcal{F}^{\mathrm{F}}} \\
\hdashline \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}} \\
\mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{s}} \\
\mathrm{~V}_{\mathcal{F}^{\mathrm{s}}}^{\mathrm{s}}
\end{array}\right]+\left[\begin{array}{ccc:ccc}
0 & -\mathrm{G}_{\mathcal{T}} & -\mathrm{G}_{\mathcal{F}} & 0 & 0 & 0 \\
\mathrm{G}_{\mathcal{T}}^{\dagger} & \Sigma_{\mathcal{T} \mathcal{T}}^{\mathrm{F}} & \Sigma_{\mathcal{T} \mathcal{F}}^{\mathrm{F}} & 0 & 0 & 0 \\
\mathrm{G}_{\mathcal{F}}^{\dagger} & \Sigma_{\mathcal{F} \mathcal{T}}^{\mathrm{F}} & \Sigma_{\mathcal{F} \mathcal{F}}^{\mathrm{F}} & 0 & 0 & \mathrm{C}_{\Gamma} \\
\hdashline 0 & 0 & 0 & 0 & -\mathrm{E}_{\mathcal{T}} & -\mathrm{E}_{\mathcal{F}} \\
0 & 0 & 0 & \mathrm{E}_{\mathcal{T}}^{\dagger} & \Sigma_{\mathcal{T} \mathcal{T}} & \Sigma_{\mathcal{T} \mathcal{F}}^{\mathrm{S}} \\
0 & 0 & -\mathrm{C}_{\Gamma}^{\dagger} & \mathrm{E}_{\mathcal{F}}^{\dagger} & \Sigma_{\mathcal{F} \mathcal{T}}^{\mathrm{S}} & \Sigma_{\mathcal{F} \mathcal{F}}^{\mathrm{S}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}} \\
\mathrm{P}_{\mathcal{T}^{\mathrm{F}}} \\
\mathrm{P}_{\mathcal{T}^{\mathrm{F}}} \\
\hdashline \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}} \\
\mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{S}} \\
\mathrm{~V}_{\mathcal{F}^{\mathrm{s}}}^{\mathrm{s}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{G}_{\mathcal{T}^{\mathrm{F}}} \\
0 \\
\hdashline 0 \\
\mathrm{~F}_{\mathcal{T}^{\mathrm{s}}} \\
0
\end{array}\right]
$$

- Rearrangement of the dofs: first the cell unknowns and then the face unknowns

SDIRK (s, s + 1) schemes

- Let us consider the following ODE, with $t \in J$ and $f: \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$,

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in J \\
y_{\mid t=0}=y_{0} \in \mathbb{R}^{m}
\end{array}\right.
$$

- $\operatorname{SDIRK}(s, s+1)$ consist in solving sequentially for all $1 \leq i \leq s$,

$$
\left\{\begin{array}{l}
u_{i}^{[n]}=u_{n-1}+\Delta t \sum_{j=1}^{i} a_{i j} f\left(t_{n-1}+c_{j} \Delta t, u_{j}^{[n]}\right) \\
u_{n}=u_{n-1}+\Delta t \sum_{j=1}^{s} b_{j} f\left(t_{n-1}+c_{j} \Delta t, u_{j}^{[n]}\right)
\end{array}\right.
$$

c_{1}	a_{*}	0	\cdots	0
c_{2}	a_{21}	a_{*}	\ddots	0
\vdots	\vdots	\ddots	\ddots	\vdots
c_{s}	$a_{s 1}$	\cdots	$a_{s, s-1}$	a_{*}
	b_{1}	\cdots	b_{s-1}	b_{s}

SDIRK (s, s + 1) schemes

- Let us consider the following ODE, with $t \in J$ and $f: \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$,

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in J \\
y_{\mid t=0}=y_{0} \in \mathbb{R}^{m}
\end{array}\right.
$$

- $\operatorname{SDIRK}(s, s+1)$ consist in solving sequentially for all $1 \leq i \leq s$,

$$
\left\{\begin{array}{l}
u_{i}^{[n]}=u_{n-1}+\Delta t \sum_{j=1}^{i} a_{i j} f\left(t_{n-1}+c_{j} \Delta t, u_{j}^{[n]}\right) \\
u_{n}=u_{n-1}+\Delta t \sum_{j=1}^{s} b_{j} f\left(t_{n-1}+c_{j} \Delta t, u_{j}^{[n]}\right)
\end{array}\right.
$$

c_{1}	a_{*}	0	\cdots	0
c_{2}	a_{21}	a_{*}	\ddots	0
\vdots	\vdots	\ddots	\ddots	\vdots
c_{s}	$a_{s 1}$	\cdots	$a_{s, s-1}$	a_{*}
	b_{1}	\cdots	b_{s-1}	b_{s}

$\operatorname{SDIRK}(\mathrm{s}, \mathrm{s}+1)$ Butcher tableaux for $s \in\{1,2,3\}$

$1 / 2$	$1 / 2$
	1

(a) $\operatorname{SDIRK}(1,2)$

$1 / 4$	$1 / 4$	0
$3 / 4$	$1 / 2$	$1 / 4$
	$1 / 2$	$1 / 2$

(b) $\operatorname{SDIRK}(2,3)$

γ	γ	0	0
$1 / 2$	$1 / 2-\gamma$	γ	0
$1-\gamma$	2γ	$1-4 \gamma$	γ
	δ	$1-2 \delta$	δ

(c) $\operatorname{SDIRK}(3,4)$

Tab. 1: Butcher tableaux corresponding for some $\operatorname{SDIRK}(\mathrm{s}, \mathrm{s}+1)$ schemes studied

SDIRK-HHO scheme

- Face-based sparse linear system to be solved at each stage.
- We solve sequentially for all $1 \leq i \leq s$,

SDIRK-HHO scheme

- Face-based sparse linear system to be solved at each stage.
- We solve sequentially for all $1 \leq i \leq s$,
- The upper 4×4 submatrix associated with the acoustic and elastic cell unknowns is block-diagonal.
- Schur complement procedure

ERK(s) schemes

- $\operatorname{ERK}(s)$ consist in updating sequentially for all $1 \leq i \leq s$,

$$
\left\{\begin{array}{l}
u_{i}^{[n]}=u_{n-1}+\Delta t \sum_{j=1}^{i-1} a_{i j} f\left(t_{n-1}+c_{j} \Delta t, u_{j}^{[n]}\right) \\
u_{n}=u_{n-1}+\Delta t \sum_{j=1}^{s} b_{j} f\left(t_{n-1}+c_{j} \Delta t, U_{j}^{[n]}\right)
\end{array}\right.
$$

c_{1}	0	\cdots	\cdots	0
c_{2}	a_{21}	0	\cdots	0
\vdots	\vdots	\ddots	\ddots	\vdots
c_{s}	$a_{s 1}$	\cdots	$a_{s, s-1}$	0
	b_{1}	\cdots	b_{s-1}	b_{s}

ERK(s) schemes

- $\operatorname{ERK}(s)$ consist in updating sequentially for all $1 \leq i \leq s$,

$$
\left\{\begin{array}{l}
u_{i}^{[n]}=u_{n-1}+\Delta t \sum_{j=1}^{i-1} a_{i j} f\left(t_{n-1}+c_{j} \Delta t, u_{j}^{[n]}\right) \\
u_{n}=u_{n-1}+\Delta t \sum_{j=1}^{s} b_{j} f\left(t_{n-1}+c_{j} \Delta t, U_{j}^{[n]}\right)
\end{array}\right.
$$

with	c_{1}	0	\cdots	\cdots	0
	a_{21}	0	\cdots	0	
	\vdots	\vdots	\ddots	\ddots	\vdots
	c_{s}	$a_{s 1}$	\cdots	$a_{s, s-1}$	0
	b_{1}	\cdots	b_{s-1}	b_{s}	

ERK(s) Butcher tableaux for $s \in\{1,2,3,4\}$

(a) $\operatorname{ERK}(1)$: forward Euler

(c) $\operatorname{ERK}(3)$

0	0	0
$1 / 2$	$1 / 2$	0
	0	1

(b) $\operatorname{ERK}(2)$: explicit midpoint

0	0	0	0	0
$1 / 2$	$1 / 2$	0	0	0
$1 / 2$	0	$1 / 2$	0	0
1	0	0	1	0
	$1 / 6$	$1 / 3$	$1 / 3$	$1 / 6$

(d) $\operatorname{ERK}(4)$

Tab. 2: Butcher tableaux corresponding of the ERK(s) schemes studied

HHO-DRK scheme

- ERK-HHO is not fully explicit
- Implicit coupling of face unknowns is hidden in ERK schemes

HHO-DRK scheme

- ERK-HHO is not fully explicit
- Implicit coupling of face unknowns is hidden in ERK schemes
- Fortunately, $\left[\begin{array}{cc}\Sigma_{\mathcal{F} \mathcal{F}}^{\mathrm{F}} & \mathrm{C}^{\Gamma} \\ -\mathrm{C}^{\Gamma} & \Sigma_{\mathcal{F} \mathcal{F}}^{S}\end{array}\right]$ has a block diagonal structure for a mixed-order discretization

Rearrangement of the face terms for the inversion of coupling block

- Distinguish between internal faces and interfaces
- Uncover a block diagonal structure

Rearrangement of the face terms for the inversion of coupling block

- Distinguish between internal faces and interfaces
- Uncover a block diagonal structure

$1^{\text {st }}$ step of the ERK-HHO scheme

- 1^{st} step: $\left(\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}}{ }^{n, 1}, \mathrm{P}_{\mathcal{T}^{\mathrm{F}}}{ }^{n, 1}, \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}}{ }^{n, 1}, \mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{s}}{ }^{n, 1}\right):=\left(\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}}{ }^{n-1}, \mathrm{P}_{\mathcal{T}^{\mathrm{F}}}{ }^{n-1}, \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}}{ }^{n-1}, \mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}{ }^{n-1}\right)$ and solve

$$
\left[\begin{array}{cc}
\Sigma_{\mathcal{F} \mathcal{F}}^{\mathrm{F}} & \mathrm{C}_{\Gamma}^{\dagger} \\
-\mathrm{C}_{\Gamma} & \Sigma_{\mathcal{F} \mathcal{F}}^{\mathrm{S}}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{P}_{\mathcal{F}^{\mathrm{F}}} n, 1 \\
\mathrm{~V}_{\mathcal{F}^{\mathrm{s}}}^{\mathrm{S}} n, 1
\end{array}\right]=-\left(\left[\begin{array}{ll}
\mathrm{G}_{\mathcal{F}}^{\dagger} & \Sigma_{\mathcal{F} \mathcal{T}}^{\mathrm{F}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}} n, 1 \\
\mathrm{P}_{\mathcal{T}^{\mathrm{F}}} n, 1
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{E}_{\mathcal{F}}^{\dagger} & \Sigma_{\mathcal{F} \mathcal{T}}^{\mathrm{S}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{S}_{\mathcal{T}^{\mathrm{s}}} n, 1 \\
\mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{S}}
\end{array}\right]\right)
$$

$2^{\text {nd }}$ step: ERK-HHO scheme

- $2^{\text {nd }}$ step: If $s \geq 2$, solve sequentially for all $2 \leq i \leq s$,
$-\left[\begin{array}{cc:cc}\mathbf{M}_{\mathcal{T} \mathcal{T}}^{v^{\mathrm{F}}} & 0 & 0 & 0 \\ 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{F}} & 0 & 0 \\ \hdashline 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\boldsymbol{\varepsilon}} & 0 \\ 0 & 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{S}}\end{array}\right]\left[\begin{array}{c}\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}} n, i \\ \mathbf{P}_{\mathcal{T}^{\mathrm{F}}}{ }^{n, i} \\ \hdashline \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}}{ }^{n, i} \\ \mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{s}}\end{array}\right]=\left[\begin{array}{cccc}\mathbf{M}_{\mathcal{T} \mathcal{T}}^{v^{\mathrm{F}}} & 0 & 0 & 0 \\ 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{F}} & 0 & 0 \\ \hdashline 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\varepsilon} & 0 \\ 0 & 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{s}}\end{array}\right]\left[\begin{array}{c}\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}{ }^{n-1} \\ \mathrm{P}_{\mathcal{T}^{\mathrm{F}}}{ }^{n-1} \\ \hdashline \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}}{ }^{n-1} \\ \mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}{ }^{n-1}\end{array}\right]$

$$
+\Delta t \sum_{j=1}^{i-1} a_{i j}\left(\left[\begin{array}{c}
0 \\
\mathrm{G}_{\mathcal{T}^{\mathrm{F}}}^{n-1+c_{j}} \\
\hdashline 0 \\
\mathrm{~F}_{\mathcal{T}^{\mathrm{s}}}^{n-1+c_{j}}
\end{array}\right]-\left[\begin{array}{cc:cc:cc}
0 & -\mathrm{G}_{\mathcal{T}} & 0 & 0 & -\mathrm{G}_{\mathcal{F}} & 0 \\
\mathrm{G}_{\mathcal{T}}^{\dagger} & \Sigma_{\mathcal{T} \mathcal{T}}^{\mathrm{F}} & 0 & 0 & \Sigma_{\mathcal{T} \mathcal{F}}^{\mathrm{F}} & 0 \\
\hdashline 0 & 0 & 0 & -\mathrm{E}_{\mathcal{T}} & 0 & -\mathrm{E}_{\mathcal{F}} \\
0 & 0 & \mathrm{E}_{\mathcal{T}}^{\dagger} & \Sigma_{\mathcal{T} \mathcal{T}}^{\mathrm{S}} & 0 & \Sigma_{\mathcal{T} \mathcal{F}}^{\mathrm{S}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}} n, j \\
\mathrm{P}_{\mathcal{T}^{\mathrm{F}}} n, j \\
\hdashline \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}}{ }^{n, j} \\
\mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}{ }^{n, j} \\
\hdashline \mathrm{P}_{\mathcal{F}^{\mathrm{F}}} n, j \\
\mathrm{~V}_{\mathcal{F}^{\mathrm{s}}}^{\mathrm{s}} n, j
\end{array}\right]\right)
$$

$2^{\text {nd }}$ step: ERK-HHO scheme

- $2^{\text {nd }}$ step: If $s \geq 2$, solve sequentially for all $2 \leq i \leq s$,
$-\left[\begin{array}{cc:cc}\mathbf{M}_{\mathcal{T} \mathcal{T}}^{v^{\mathrm{F}}} & 0 & 0 & 0 \\ 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{F}} & 0 & 0 \\ \hdashline 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\varepsilon} & 0 \\ 0 & 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{s}}\end{array}\right]\left[\begin{array}{c}\mathbf{V}_{\mathcal{T}^{\mathrm{F}}}{ }^{n, i} \\ \mathbf{P}_{\mathcal{T}^{\mathrm{F}}}{ }^{n, i} \\ \hdashline \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}}{ }^{n, i} \\ \mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}^{\mathrm{s}}\end{array}\right]=\left[\begin{array}{cc:cc}\mathbf{M}_{\mathcal{T} \mathcal{T}}^{v^{\mathrm{F}}} & 0 & 0 & 0 \\ 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{F}} & 0 & 0 \\ \hdashline 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\varepsilon} & 0 \\ 0 & 0 & 0 & \mathbf{M}_{\mathcal{T} \mathcal{T}}^{\mathrm{s}}\end{array}\right]\left[\begin{array}{c}\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}{ }^{n-1} \\ \mathrm{P}_{\mathcal{T}^{\mathrm{F}}}{ }^{n-1} \\ \hdashline \mathrm{~S}_{\mathcal{T}^{\mathrm{s}}}{ }^{n-1} \\ \mathrm{~V}_{\mathcal{T}^{\mathrm{s}}}{ }^{\mathrm{s}}\end{array}\right]$

$$
\triangleright\left[\begin{array}{cc}
\Sigma_{\mathcal{F} \mathcal{F}}^{\mathrm{F}} & \mathrm{C}_{\Gamma}^{\dagger} \\
-\mathrm{C}_{\Gamma} & \Sigma_{\mathcal{F} \mathcal{F}}^{\mathrm{S}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{P}_{\mathcal{F}^{\mathrm{F}}}^{n, i} \\
\mathrm{~V}_{\mathcal{F}^{\mathrm{S}}} n, i
\end{array}\right]=-\left(\left[\begin{array}{ll}
\mathrm{G}_{\mathcal{F}}^{\dagger} & \Sigma_{\mathcal{F} \mathcal{T}}^{\mathrm{F}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{V}_{\mathcal{T}^{\mathrm{F}}}^{\mathrm{F}} n, i \\
\mathrm{P}_{\mathcal{T}^{\mathrm{F}}} n, i
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{E}_{\mathcal{F}}^{\dagger} & \Sigma_{\mathcal{F} \mathcal{T}}^{\mathrm{S}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{S}_{\mathcal{T}^{\mathrm{s}}} n, i \\
\mathrm{~V}_{\mathcal{T}^{\mathrm{s}}} n, i
\end{array}\right]\right)
$$

Table of Contents

(1) Motivation

- Context and issues
- Introduction to dG and HDG/HHO methods
(2) Model problem
(3) RK-HHO discretization
- HHO space semi-discretization
- Singly diagonally implicit schemes
- Explicit schemes

4 Numerical results

- Convergence rates
- Ricker wavelet
- Sedimentary basin
(5) To go further: Unfitted HHO method

Computational parameters

- Space level refinement: $h=2^{-\ell}$
- Time level refinement: $\Delta t=0.1 \times 2^{-n}$

Computational parameters

- Space level refinement: $h=2^{-\ell}$
- Time level refinement: $\Delta t=0.1 \times 2^{-n}$

Meshes

Fig. 9: Cartesian, simplicial and polyhedral meshes for $\ell=\{2,3,4\}$

Analytical solution

- Analytical solution, polynomial in space:

$$
\boldsymbol{u}^{\mathrm{S}}(x, y, t):=\sin (\sqrt{2} \pi t) x^{2}(1+x) y(1-y)\binom{1}{1}, \quad u^{\mathrm{F}}(x, y, t):=\sin (\sqrt{2} \pi t) x^{2}(1-x) y(1-y)
$$

Analytical solution

- Analytical solution, polynomial in space:

$$
\boldsymbol{u}^{\mathrm{S}}(x, y, t):=\sin (\sqrt{2} \pi t) x^{2}(1+x) y(1-y)\binom{1}{1}, \quad u^{\mathrm{F}}(x, y, t):=\sin (\sqrt{2} \pi t) x^{2}(1-x) y(1-y)
$$

Verification of time convergence rates

\rightarrow SDIRK-HHO scheme

- $k^{\prime}=k+1=6 ; \ell=2 ; n \in\{3,4,5,6,7\}$
- $\tau_{T}^{\mathrm{F}}=\mathcal{O}(1)$ and $\tau_{T}^{\mathrm{S}}=\mathcal{O}(1)$

ERK-HHO scheme

- $k^{\prime}=k+1=5 ; \ell=1 ; n \in\{6,7,8,9\}$
- $\tau_{T}^{\mathrm{F}}=\mathcal{O}(1)$ and $\tau_{T}^{\mathrm{S}}=\mathcal{O}(1)$

Fig. 10: Errors for the HHO-RK schemes as a function of the time-step.

Analytical solution

- Analytical solution polynomial in time:

$$
\boldsymbol{u}_{\mathrm{S}}(x, y, t):=x t^{2} \sin (\pi x) \sin (\pi y)\binom{1}{1}, \quad u_{\mathrm{F}}(x, y, t):=x t^{2} \sin (\pi x) \sin (\pi y)
$$

Analytical solution

- Analytical solution polynomial in time:

$$
\boldsymbol{u}_{\mathrm{S}}(x, y, t):=x t^{2} \sin (\pi x) \sin (\pi y)\binom{1}{1}, \quad u_{\mathrm{F}}(x, y, t):=x t^{2} \sin (\pi x) \sin (\pi y)
$$

Verification of space convergence rates

$\rightarrow \operatorname{SDIRK}(3,4)-$ HHO scheme

- $n=8$
$-\ell \in\{0,1,2,3,4\}$

Fig. 11: Errors for the HHO-SDIRK $(3,4)$ schemes as a function of the mesh-size. Left pannel: $\tau_{T}^{\mathrm{F}}=\mathcal{O}(1)$ and $\tau_{T}^{\mathrm{S}}=\mathcal{O}(1)$. Right pannel: $\tau_{T}^{\mathrm{F}}=\mathcal{O}\left(h_{T}^{-1}\right)$ and $\tau_{T}^{\mathrm{S}}=\mathcal{O}\left(h_{T}^{-1}\right)$

Test case settings

- HHO-SDIRK $(3,4)$ scheme
- Computational parameters: $k=1, \ell=7$, and $n=9$
- Final simulation time: $T_{\mathrm{f}}:=1 \mathrm{~s} \rightarrow$ Homogeneous Dirichlet boundary conditions
\rightarrow Initial condition: velocity Ricker wavelet centered at the point $\left(x_{c}, y_{c}\right) \in \Omega^{\mathrm{F}}$,

$$
\boldsymbol{v}_{\mathbf{0}}(x, y):=\theta \exp \left(-\pi^{2} \frac{r^{2}}{\lambda^{2}}\right)\binom{x-x_{c}}{y-y_{c}}
$$

Test case settings

HHO-SDIRK $(3,4)$ scheme
Final simulation time: $T_{\mathrm{f}}:=1 \mathrm{~s}$

- Computational parameters: $k=1, \ell=7$, and $n=9$
- Homogeneous Dirichlet boundary conditions
- Initial condition: velocity Ricker wavelet centered at the point (x_{c}, y_{c}) $\in \Omega^{F}$,

$$
\boldsymbol{v}_{\mathbf{O}}(x, y):=\theta \exp \left(-\pi^{2} \frac{r^{2}}{\lambda^{2}}\right)\binom{x-x_{c}}{y-y_{c}}
$$

Academic test case:

Homogeneous physical properties: $\quad \rho^{\mathrm{F}}=\rho^{\mathrm{S}}=1, \quad c_{\mathrm{P}}^{\mathrm{F}}=c_{\mathrm{P}}^{\mathrm{S}}=\sqrt{3}, \quad c_{\mathrm{S}}=1$

Fig. 12: 2D-Distribution of acoustic pressure (upper side) and elastic velocity norm (lower side) at times $t \in\{0,0.025,0.075,0.15\}$.

Study of the energy of the academic test case

Fig. 13: Left panel: Energy repartition as function of the time. Right panel: Relative energy loss as function of the time.

Realistic test case with strong property contrast: Granit-Water

- Physical properties:
- Granit: $\rho^{\mathrm{s}}=2800 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, c_{\mathrm{P}}^{\mathrm{S}}=5000 \mathrm{~m} \cdot \mathrm{~s}^{-1}, c_{\mathrm{s}}=3000 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- Water: $\rho^{\mathrm{F}}:=997 \mathrm{k} \cdot \mathrm{m}^{-3}, \kappa:=2,1 \times 10^{9} \mathrm{~Pa}, c_{\mathrm{P}}^{\mathrm{F}}:=1450 \mathrm{~m} . \mathrm{s}^{-1}$

Realistic test case with strong property contrast: Granit-Water

- Physical properties:
- Granit: $\rho^{\mathrm{s}}=2800 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, c_{\mathrm{P}}^{\mathrm{s}}=5000 \mathrm{~m} \cdot \mathrm{~s}^{-1}, c_{\mathrm{s}}=3000 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- Water: $\rho^{\mathrm{F}}:=997 \mathrm{k} \cdot \mathrm{m}^{-3}, \kappa:=2,1 \times 10^{9} \mathrm{~Pa}, c_{\mathrm{P}}^{\mathrm{F}}:=1450 \mathrm{~m} . \mathrm{s}^{-1}$
- Computational parameters:
$\downarrow \operatorname{SDIRK}(3,4) \quad n=8$

Realistic test case with strong property contrast: Granit-Water

- Physical properties:

- Granit: $\rho^{\mathrm{s}}=2800 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, c_{\mathrm{P}}^{\mathrm{s}}=5000 \mathrm{~m} \cdot \mathrm{~s}^{-1}, c_{\mathrm{s}}=3000 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- Water: $\rho^{\mathrm{F}}:=997 \mathrm{k} \cdot \mathrm{m}^{-3}, \kappa:=2,1 \times 10^{9} \mathrm{~Pa}, c_{\mathrm{P}}^{\mathrm{F}}:=1450 \mathrm{~m} . \mathrm{s}^{-1}$
- Computational parameters: $\rightarrow \operatorname{SDIRK}(3,4) \quad n=8$

Fig. 14: Left panel: 2D-distribution of acoustic pressur (upper side) and elastic velocity norm (lower side) at time $t=0.375$ s for $k=2$ and $\ell=7$. Right panel: Comparison of numerical solution on a coarse mesh $(\ell=5)$ to the semi-analytical solution provided by Gar6more.

Propagation of an elastic pulse in a sedimentary basin and atmosphere

- Physical properties:
- Sedimentary basin: $\rho^{\mathrm{S}}=1200 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, c_{\mathrm{P}}^{\mathrm{S}}=3400 \mathrm{~m} \cdot \mathrm{~s}^{-1}, c_{\mathrm{S}}=1400 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- Bedrock: $\rho^{\mathrm{S}}=5350 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, c_{\mathrm{P}}^{\mathrm{s}}=3090 \mathrm{~m} . \mathrm{s}^{-1}, c_{\mathrm{S}}=2570 \mathrm{~m} . \mathrm{s}^{-1}$
- Air: $\rho^{\mathrm{F}}:=1.292 \mathrm{k} \cdot \mathrm{m}^{-3}, c_{\mathrm{P}}^{\mathrm{F}}:=340 \mathrm{~m} . \mathrm{s}^{-1}$

Propagation of an elastic pulse in a sedimentary basin and atmosphere

- Physical properties:
- Sedimentary basin: $\rho^{\mathrm{S}}=1200 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, c_{\mathrm{P}}^{\mathrm{S}}=3400 \mathrm{~m} \cdot \mathrm{~s}^{-1}, c_{\mathrm{S}}=1400 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- Bedrock: $\rho^{\mathrm{S}}=5350 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, c_{\mathrm{P}}^{\mathrm{S}}=3090 \mathrm{~m} \cdot \mathrm{~s}^{-1}, c_{\mathrm{S}}=2570 \mathrm{~m} . \mathrm{s}^{-1}$
- Air: $\rho^{\mathrm{F}}:=1.292 \mathrm{k} . \mathrm{m}^{-3}, c_{\mathrm{P}}^{\mathrm{F}}:=340 \mathrm{~m} . \mathrm{s}^{-1}$
- Computational setting:
\rightarrow HHO-SDIRK $(3,4)$ scheme \quad Computational parameters: $k=1, \ell=8$, and $n=9$
- homogeneous Dirichlet boundary conditions
\rightarrow Initial condition: velocity Ricker wavelet centered at the point $\left(x_{c}, y_{c}\right) \in \Omega^{\text {s }}$,

Propagation of an elastic pulse in a sedimentary basin and atmosphere

- Physical properties:
- Sedimentary basin: $\rho^{\mathrm{s}}=1200 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, c_{\mathrm{P}}^{\mathrm{s}}=3400 \mathrm{~m} . \mathrm{s}^{-1}, c_{\mathrm{S}}=1400 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
- Bedrock: $\rho^{\mathrm{s}}=5350 \mathrm{~kg} \cdot \mathrm{~m}^{-3}, c_{\mathrm{P}}^{\mathrm{s}}=3090 \mathrm{~m} . \mathrm{s}^{-1}, c_{\mathrm{S}}=2570 \mathrm{~m} . \mathrm{s}^{-1}$
- Air: $\rho^{\mathrm{F}}:=1.292 \mathrm{k} \cdot \mathrm{m}^{-3}, c_{\mathrm{P}}^{\mathrm{F}}:=340 \mathrm{~m} . \mathrm{s}^{-1}$
- Computational setting:
\rightarrow HHO-SDIRK $(3,4)$ scheme \quad Computational parameters: $k=1, \ell=8$, and $n=9$
- homogeneous Dirichlet boundary conditions
- Initial condition: velocity Ricker wavelet centered at the point $\left(x_{c}, y_{c}\right) \in \Omega^{\mathrm{s}}$,

Fig. 15: Mesh of the sedimentary basin

Propagation of an elastic pulse in a sedimentary basin and atmosphere

- Energy transfer enhancement above the sedimentary basin

Fig. 16: Propagation of an elastic pulse in a sedimentary basin and atmosphere

Table of Contents

(1) Motivation

- Context and issues
- Introduction to dG and HDG/HHO methods
(2) Model problem
(3) RK-HHO discretization
- HHO space semi-discretization
- Singly diagonally implicit schemes
- Explicit schemes
(4) Numerical results
- Convergence rates
- Ricker wavelet
- Sedimentary basin
(5) To go further: Unfitted HHO method

Unfitted meshes

- Goal: Simplify mesh generation
- Principle: Meshing in the simplest possible way (Cartesian meshes)

Discontinuities are described using level set functions which cut the mesh cells.
The interfaces are taken into account by Nitsche's method without the use of Lagrange multipliers.

Issues

- Drawback: Ill - conditioning

Some cells can have an arbitrarily small cut.

- Stabilization techniques:
- Agglomeration [Burman, Cicuttin, Delay, Ern, 2021]
- The challenge lies in the modification of the mesh:

Hardly compatible with HPC architectures

- Discrete extension [Burman, Hansbo, Larson, 2020/2021]
- The challenge lies in the modification of the scheme

Fig. 17: Exemple of a bad cut

Fig. 18: Agglomeration procedure for different mesh refinement levels for a flower interface

Goal of the present work

Derive a new unfitted HHO method with discrete polynomial extension compatible with HPC architecture.

Elliptic interface problem

$$
\left\{\begin{aligned}
-\nabla \cdot(\kappa \nabla u(t)) & =f(t) & & \text { in } \Omega_{1} \cup \Omega_{2}, \\
\llbracket u(t) \rrbracket_{\Gamma} & =g_{D} & & \text { on } \Gamma, \\
\llbracket \kappa \nabla u(t) \rrbracket_{\Gamma} \cdot \boldsymbol{n}_{\Gamma} & =g_{N} & & \text { on } \Gamma, \\
u(t) & =0 & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

Fig. 19: Model problem

Partioning of the unfitted mesh

Fig. 20: Left panel. Illustration of the different type of cell involved in the unfitted mesh.
Right panel. Zoom on a cut cell.

Pairing operator

$$
\begin{gathered}
\mathcal{N}_{i}: \mathcal{T}_{h}^{\mathrm{KO}, i} \ni T \longmapsto S \in\left(\mathcal{T}_{h}^{i} \cup \mathcal{T}_{h}^{\mathrm{OK}} \cup \mathcal{T}_{h}^{\mathrm{KO}, \bar{i}}\right) \\
\mathcal{T}_{h}^{\mathrm{KO}, i}=\left(\mathcal{T}_{h}^{\mathrm{KO}, i} \cap \mathcal{N}_{i}^{-1}\left(\mathcal{T}_{h}^{i}\right)\right) \cup\left(\mathcal{T}_{h}^{\mathrm{KO}, i} \cap \mathcal{N}_{i}^{-1}\left(\mathcal{T}_{h}^{\mathrm{KO}, \bar{i}}\right)\right) \cup\left(\mathcal{T}_{h}^{\mathrm{KO}, i} \cap \mathcal{N}_{i}^{-1}\left(\mathcal{T}_{h}^{\mathrm{OK}}\right)\right) \\
\hline \mathcal{T}_{h}^{1} \\
\hline
\end{gathered}
$$

Fig. 21: Representation of the distribution of paired cells by the bad cut cells.

Pairing operator

$$
\begin{gathered}
\mathcal{N}_{i}: \mathcal{T}_{h}^{\mathrm{KO}, i} \ni T \longmapsto S \in\left(\mathcal{T}_{h}^{i} \cup \mathcal{T}_{h}^{\mathrm{OK}} \cup \mathcal{T}_{h}^{\mathrm{KO}, \bar{i}}\right) \\
\mathcal{T}_{h}^{\mathrm{KO}, i}=\left(\mathcal{T}_{h}^{\mathrm{KO}, i} \cap \mathcal{N}_{i}^{-1}\left(\mathcal{T}_{h}^{i}\right)\right) \cup\left(\mathcal{T}_{h}^{\mathrm{KO}, i} \cap \mathcal{N}_{i}^{-1}\left(\mathcal{T}_{h}^{\mathrm{KO}, \bar{i}}\right)\right) \cup\left(\mathcal{T}_{h}^{\mathrm{KO}, i} \cap \mathcal{N}_{i}^{-1}\left(\mathcal{T}_{h}^{\mathrm{OK}}\right)\right) \\
\mathcal{T}_{h}^{1} \\
\mathcal{T}_{h}^{2} \\
\hline
\end{gathered}
$$

Fig. 21: Representation of the distribution of paired cells by the bad cut cells.

Modification of the numerical scheme

- The different HHO operators are modified depending on the type of cell considered.
- The numerical analysis of this new scheme and its implementation are in progress.

Thank you for your attention

